DIII-D RESEARCH OPPORTUNITIES FORUM FOR THE 2019 EXPERIMENTAL CAMPAIGN

Author (full last name only):
Keyword:

Click here for internal detailed listing
Below is a public summary listing:

ID Title Research Area Name Affiliation Time
Req'ed
Presentation ITPA
Joint Exp
ITER IO Urgent
Research Task
3High qmin with betaN > 4Steady State Scenarios & High qmin ThrustVictorLLNLYesBreakoutNoNo
4Effect of rotation on confinement and stability in the high qmin scenarioSteady State Scenarios & High qmin ThrustVictorLLNLYesBreakoutNoNo
6H vs. D Core Transport Model Validation at High Te/TiIsotope mass ThrustGriersonGAYesGeneralYesYes
9Improved H-mode access in mixed H/He plasmasIsotope mass ThrustSchmitzUCLAYesBreakoutNoNo
10The role of RE-driven kinetic instabilities on formation of post-disruption RE beamDisruption Mitigation ThrustLvovskiyGAYesBreakoutNoNo
12Toward Initiation of Wide Pedestal QH-Mode without NBIPedestal Physics and Pedestal Structure & QH ThrustErnstMassachusetts Institute of TechnologyYesBreakoutNoNo
13Impact of broadened pressure profile on AE stability in qmin>2 reversed shear steady state scenarioSteady State Scenarios & High qmin ThrustCollinsORNLYesBreakoutYesNo
21High performance in the qmin~1.5 scenarioSteady State Scenarios & High qmin ThrustThomeGAYesBreakoutNoNo
23Simultaneous Control of n=1 and n=2 Resistive Wall Modes and Stability MeasurementsSteady State Scenarios & High qmin ThrustBatteyColumbia UYesBreakoutNoNo
24Tuning of Controller/Observer Gains for n=1 and n=2 Resistive Wall Mode ControlControlBatteyColumbia UYesBreakoutNoNo
25How fast can we go?Torkil JensenVictorLLNLYesBreakoutNoNo
28Effect of Isotopic Mass on Wide Pedestal QH-Mode Core and Pedestal Turbulence and Intrinsic RotationIsotope mass ThrustErnstMassachusetts Institute of TechnologyYesBreakoutNoNo
29Parametric Variation of Pedestal Turbulence and Transport in Wide Pedestal QH-ModePedestal Physics and Pedestal Structure & QH ThrustErnstMassachusetts Institute of TechnologyYesBreakoutNoNo
30Multi-scale/field pedestal turbulence, transport, drive, damping just prior to ELM and inter-ELMPedestal Physics and Pedestal Structure & QH ThrustRhodesUCLAYesBreakoutNoNo
31Optimization of hydrogen H-mode transition targeting ITER's Pre Fusion Plasma Operation StageIsotope mass ThrustRhodesUCLAYesBreakoutNoNo
32Testing and validating low pedestal height with high core confinement plasmasDIII-D/EAST Task Force/ThrustRhodesUCLAYesBreakoutNoNo
33Is core ITB in high-betap plasmas due to ExB velocity shear or magnetic shear?DIII-D/EAST Task Force/ThrustRhodesUCLAYesBreakoutNoNo
34Physics of density pump-out with application of resonant magnetic perturbations (RMP)Pedestal Physics and Pedestal Structure & QH ThrustRhodesUCLAYesBreakoutNoNo
35Reduction of background carbon via boron dropper for a closer approach to fusion reactor conditionsCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationRhodesUCLAYesBreakoutNoNo
36Turbulence spreading from pedestal into SOL and testing models/scalings of lambda_qDiv/SOL Turbulence and transportRhodesUCLAYesBreakoutNoNo
37Wide Pedestal QH-Mode Path to Super H-ModeInductive ScenariosErnstMassachusetts Institute of TechnologyYesBreakoutNoNo
38Role of turbulence in "No man's land" in determining pedestal structure and core profiles of H-modeTurbulence and transportKumar BaradaUCLAYesBreakoutNoNo
39Revisit pellet triggered L-H transition and understand underlying turbulence suppression mechanismsL-H transitionKumar BaradaUCLAYesBreakoutNoNo
40characterize divertor detachment in closed divertorParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustWangGAYesBreakoutNoNo
41Impurity Transport and Carbon Reduction in Wide Pedestal QH-ModeCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationErnstMassachusetts Institute of TechnologyYesBreakoutNoNo
45Coupling of drift-closure v.s. good performance pedestal assisted with dissipative divertorParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustWangGAYesBreakoutNoNo
47Divertor configuration effects on the L-H power thresholdL-H transitionYanU of WisconsinYesBreakoutNoNo
49When Is Ion Thermal Transport Neoclassical in the H-mode Pedestal?Pedestal Physics and Pedestal Structure & QH ThrustHaskeyPPPLYesBreakoutNoNo
50D2 pellet pacing with tangential injectionELM ControlWilcoxORNLYesBreakoutNoNo
51Deuterium poloidal rotation measurements using main ion CER spectroscopyRotation physicsHaskeyPPPLYesBreakoutNoNo
52Pellet pacing with with peeling-limited pedestalELM ControlWilcoxORNLYesBreakoutNoNo
53Power Flow Through the Ion Channel for Hydrogen and He-doped L-H transition at ITER relevant Qe/QiIsotope mass ThrustHaskeyPPPLYesBreakoutNoNo
54NTV Electron Root as Cause of Core Velocity Hollowing with On-Axis ECH in Very High Te H-Mode CoreRotation physicsErnstMassachusetts Institute of TechnologyYesBreakoutNoNo
55Soft-landing of a major disruption using 3D fieldsTorkil JensenDuGAYesGeneralNoNo
58Assess robustness of ITER baseline plasma response control3DSPHansonColumbia UYesBreakoutNoNo
59Assess kinetic RWM stability of ITER steady-state scenarioSteady State Scenarios & High qmin ThrustHansonColumbia UYesBreakoutNoNo
60Measure and control resistive kink mode stability3DSPHansonColumbia UYesBreakoutNoNo
61Measure the influence of profile broadness on global stabilitySteady State Scenarios & High qmin ThrustHansonColumbia UYesBreakoutNoNo
62Disruption Avoidance via ECCD Stabilization of Locked Islands and the Impact of Current Condensation3DSPReimanPPPLYesBreakoutNoNo
63Effect of Divertor Closure on Dust TransportImpact of Divertor Geometry on Divertor Leakage and SOL Impurity Transport - SAS-1W Potential ThrustAndrewImperial College LondonYesBreakoutNoNo
64Liquid Metal Dust Break-up MechanismsMaterials Migration and MitigationAndrewImperial College LondonYesBreakoutNoNo
65Negligible background carbon via boron dropper for a closer approach to fusion reactor conditionsTorkil JensenRhodesUCLAYesBreakoutNoNo
68Isotope Mass Scaling of Turbulence, Transport and ConfinementIsotope mass ThrustMcKeeU of WisconsinYesBreakoutYesNo
69EHO dominated sustained wide-pedestal QH-modePedestal Physics and Pedestal Structure & QH ThrustKumar BaradaUCLAYesBreakoutNoNo
70Constrain first principles L-H transition models: Favorable/unfavorable grad-B in Helium plasmasIsotope Mass ThrustSchmitzUCLAYesBreakoutNoNo
72H-mode access in electron-heat dominated ITER PFPO hydrogen plasmasIsotope Mass ThrustSchmitzUCLAYesBreakoutNoNo
74Modify RE distribution function with externally launched helicon (whistler) wavesTorkil JensenPaz-SoldanColumbia UYesBreakoutNoNo
76RMP-ELM Suppression Access Conditions with the actual ITER shapeInductive ScenariosPaz-SoldanColumbia UYesBreakoutNoNo
78RMP-ELM Control in Strongly Shaped PlasmasELM ControlPaz-SoldanColumbia UYesBreakoutYesNo
80B x gradB drift, divertor config, Carbon effects on QH-modePedestal Physics and Pedestal Structure & QH ThrustChenGAYesBreakoutNoNo
86H-mode Access Dependence on Divertor Magnetic ConfigurationL-H transitionAndrewImperial College LondonYesBreakoutNoNo
87Density Dependence of L-H TransitionL-H transitionAndrewImperial College LondonYesBreakoutNoNo
89Sustainment of high Super H core confinementCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationKnolkerGAYesBreakoutNoNo
90Impurity transport in diverted negative triangularity dischargesTurbulence and transportSciortinoMax-Planck Institute for Plasma PhysicsYesBreakoutNoNo
91Effect of ionization in the sheath on prompt redeposition of high-Z impuritiesMaterials Migration and MitigationBykovGAYesBreakoutNoNo
92Decouple target inward/outward asymmetries due to ExB drift and due to finite ion gyro-radiusSurface EvolutionBykovGAYesBreakoutNoNo
93Characterize arc ignition threshold due to ELM depositionMaterials Migration and MitigationBykovGAYesBreakoutNoNo
94Core impurity contamination by unipolar arcing on high-Z PFCs and on SiCMaterials Migration and MitigationBykovGAYesBreakoutNoNo
96High-resolved ELM filament properties: spatial frequency, q_perp, j_sat, profiles of n_e and T_eMaterials Migration and MitigationBykovGAYesBreakoutNoNo
97Inter-ELM pedestal turbulence and transport when ELMs appear in wide-pedestal QH-modePedestal Physics and Pedestal Structure & QH ThrustKumar BaradaUCLAYesBreakoutNoNo
98A new path to ELM mitigationTorkil JensenKnolkerGAYesBreakoutNoYes
99Scaling of ELM suppression thresholdELM ControlHuPPPLYesBreakoutNoNo
100Understanding density pump-out in ELM control experimentELM ControlHuPPPLYesBreakoutNoNo
101ELM suppression by n=1 Ex-Vessel Coil at high qminSteady State Scenarios & High qmin ThrustHuPPPLYesBreakoutNoNo
102Density pump-in by RMP in H-mode plasmaPedestal Physics and Pedestal Structure & QH ThrustHuPPPLYesBreakoutNoNo
104Radially inward propagation of pedestal after L-H transition until the first ELMPedestal Physics and Pedestal Structure & QH ThrustKumar BaradaUCLAYesBreakoutNoNo
105L-H Transitions dynamics: Impact of the beam voltage and its effects on the edge rotation shearL-H transitionBanerjeePPPLYesBreakoutNoNo
106Dependence of core-edge impurity transport on plasma shaping in Ti~Te and Ti>>Te regimesCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationSciortinoMax-Planck Institute for Plasma PhysicsYesBreakoutNoNo
107Optimization of impurity transport in RMP ELM-suppressed discharges with variable ECH locationCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationSciortinoMax-Planck Institute for Plasma PhysicsYesBreakoutNoNo
110Controlled ITB formation with narrow current channelSteady State Scenarios & High qmin ThrustVictorLLNLYesBreakoutNoNo
111Controlled ITB formation with narrow current channelTorkil JensenVictorLLNLYesBreakoutNoNo
112Measurement of surface incident ion direction using engineered targets on DiMES at DIII-DMaterials Migration and MitigationSkinnerPPPLYesBreakoutNoNo
113Characterization of SOL impurity accumulation using 13CH4 injection and collector probesImpact of Divertor Geometry on Divertor Leakage and SOL Impurity Transport - SAS-1W Potential ThrustZamperiniGAYesBreakoutNoNo
114Characterizing the radial/poloidal structure of SOL impurity accumulation with collector probesImpact of Divertor Geometry on Divertor Leakage and SOL Impurity Transport - SAS-1W Potential ThrustZamperiniGAYesBreakoutNoNo
117Validate theory-based integrated scenario modeling for high qminSteady State Scenarios & High qmin ThrustParkORNLYesBreakoutNoNo
118High density & high qminSteady State Scenarios & High qmin ThrustParkORNLYesBreakoutNoNo
119High qmin in ITER shapeSteady State Scenarios & High qmin ThrustParkORNLYesBreakoutNoNo
120Disentangling impacts of heating scheme and neutral sourcing on pedestal structurePedestal Physics and Pedestal Structure & QH ThrustNelsonColumbia UYesBreakoutNoNo
121High qmin in lower elongation, Z = +10 cm plasma with far off-axis NBCDSteady State Scenarios & High qmin ThrustParkORNLYesBreakoutNoNo
122Alfven Eigenmode Stability and Fast Ion Transport with Hydrogen and Deuterium BeamsIsotope Mass ThrustVan ZeelandGAYesBreakoutNoNo
123Alfven Eigenmode Stability and Fast Ion Transport with Helium and Deuterium BeamsIsotope Mass ThrustVan ZeelandGAYesBreakoutNoNo
125Optimize BT for high qminSteady State Scenarios & High qmin ThrustParkORNLYesBreakoutNoNo
126Effect of Isotope Mass on Intrinsic Rotation and Momentum Transport in H-Mode PlasmasIsotope Mass ThrustErnstMassachusetts Institute of TechnologyYesBreakoutNoYes
127Identify and assess pedestal magnetic fluctuations in H-mode plasmas in DIII-DPedestal Physics and Pedestal Structure & QH ThrustChenUCLAYesBreakoutNoNo
128Dependence of upstream low-Z impurity accumulation on ExB drift directionMaterials Migration and MitigationNicholsORNLYesBreakoutNoNo
129Dependence of upstream high-Z impurity accumulation on ExB drift directionImpact of Divertor Geometry on Divertor Leakage and SOL Impurity Transport - SAS-1W Potential ThrustNicholsORNLYesBreakoutNoNo
130Time resoved measurements of CX D energy and flux density at the midplane with MiMESMaterials Migration and MitigationBykovGAYesBreakoutNoNo
131Isotope identity pair in H and D type I ELMy H-modesIsotope mass ThrustMaggiCCFEYesBreakoutYesNo
132Disruption Prediction via Random Forests v2.0 and Interpretability3DSPReaMassachusetts Institute of TechnologyYesBreakoutNoNo
133Rho* scaling in Hydrogen type I ELMy H-modesIsotope mass ThrustMaggiCCFEYesBreakoutYesNo
134Validation of core and edge transport models in Hydrogen L-modeIsotope mass ThrustMaggiCCFEYesBreakoutYesNo
135Reducing the L-H power threshold in H plasmas with pelletsIsotope mass ThrustWilcoxORNLYesBreakoutNoNo
136Impurity Transport from Core to Edge in IBS-like ConditionsCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationHowardMassachusetts Institute of TechnologyYesBreakoutNoNo
137Impurity Transport from Core to Edge in Steady State Hybrid ConditionsCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationHowardMassachusetts Institute of TechnologyYesBreakoutNoNo
141Isotope effect and the role of divertor geometryIsotope Mass ThrustCasaliU of Tennessee, KnoxvilleYesBreakoutYesYes
142Helical core in high performance scenarioTurbulence and transportKnolkerGAYesBreakoutNoNo
143Development of high radiation scenario with dual seeding in open and closed divertorsCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationCasaliU of Tennessee, KnoxvilleYesBreakoutYesNo
148Impurity particle balance model in order to characterize near-SOL accumulation of carbon using 13CH4Materials Migration and MitigationDuranU of Tennessee, KnoxvilleYesBreakoutNoNo
149QH-mode for Q=10 IBS at Zero NBI torque by reducing the pressure profile peakingInductive ScenariosGarofaloGAYesBreakoutNoYes
151Test hypothesis for the cause of improved energy confinement at lower NBI torquePedestal Physics and Pedestal Structure & QH ThrustGarofaloGAYesBreakoutNoYes
154How does divertor drift affect upstream profiles?Core-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationWangGAYesBreakoutNoNo
155Characterize the impact of 3D fields on divertor closure and detachment in SASParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustHinsonORNLYesBreakoutNoNo
156Impact of magnetic perturbations on SOL force balanceCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationHinsonORNLYesBreakoutNoNo
157Perturbative Measurements of Helicon Power Deposition and TransportHeating & Current Drive Physics (including Thrust: Validation of New Current Drive Tools)BrookmanGAYesBreakoutNoNo
158Effect of O-mode deposition radius on tearing mode onset and impurity profiles in high betaN plasmasCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationPetrieGAYesBreakoutNoNo
159Low level RMP feedback to control deuterium/impurity buildup in high power, high performance plasmasCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationPetrieGAYesBreakoutNoNo
160How changes in ROSP, fueling location, and dRsep during D2 injection affect hybrid performanceCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationPetrieGAYesBreakoutNoNo
161Effect of seed selection, ROSP, and magnetic balance on successful radiating divertor operationCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationPetrieGAYesBreakoutNoNo
162Is krypton better than argon as a mantle seed in high power, high performance hybrid plasmas?Core-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationPetrieGAYesBreakoutNoNo
163Two-impurity approach as an optimal radiating divertor solution for DIII-DCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationPetrieGAYesBreakoutNoNo
164Effect of reversing the grad-B drift on high betaN plasmas under radiating divertor conditionsCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationPetrieGAYesBreakoutNoNo
165Increase the ideal MHD limits, and the passively stable operational space, of steady-state plasmasSteady State Scenarios & High qmin ThrustTurcoColumbia UYesBreakoutNoNo
166Impact of EC location and CD on current evolution, confinement and stability of steady-state plasmasSteady State Scenarios & High qmin ThrustTurcoColumbia UYesBreakoutNoNo
167Proximity of tearing mode onset to ideal limits in high-beta plasmasSteady State Scenarios & High qmin ThrustTurcoColumbia UYesBreakoutNoNo
168Extend Zero Torque Wide Pedestal QH-Mode Operation to IBS ParametersInductive ScenariosErnstMassachusetts Institute of TechnologyYesBreakoutNoNo
169Study the access to the hybrid regime, the conditions for its sustainment and its consequencesSteady State Scenarios & High qmin ThrustTurcoColumbia UYesBreakoutNoNo
170Tailor the T=0 IBS to achieve the fusion power and gain missionInductive ScenariosTurcoColumbia UYesBreakoutNoNo
171Assess the impact of EC power location on the performance and the stability of the T=0 IBSInductive ScenariosTurcoColumbia UYesBreakoutNoNo
172Integrate ITER relevant perturbations to the IBS, assess options to maintain stability & performanceInductive ScenariosTurcoColumbia UYesBreakoutNoNo
173Asses the benefits and impact of ohmic or heated L-mode phase in the IBS ramp-upInductive ScenariosTurcoColumbia UYesBreakoutNoNo
174Make DIII-D a W or no W machineInductive ScenariosTurcoColumbia UYesBreakoutNoNo
175Make DIII-D a W or no W machineCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationTurcoColumbia UYesBreakoutNoNo
176Reversing the direction of the impurity pinch at ITER-relevant edge conditionsCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationNelsonColumbia UYesBreakoutNoNo
177Evaluate the effect of penetration theory on RMP ELM suppressionELM ControlWANGASIPPYesBreakoutYesYes
178Use NBI to evaluate n=2 RMP penetration position3DSPWANGASIPPYesBreakoutYesYes
183Evaluate the effect of penetration theory on RMP ELM suppressionELM ControlWANGASIPPYesBreakoutYesYes
184Use NBI to evaluate n=2 RMP penetration position3DSPWANGASIPPYesYesYes
185Exploring the role of nonlinear MHD in triggering tearing modes3DSPChapmanU of WisconsinYesBreakoutNoNo
186Exploring the role of fluctuation-based dynamos in magnetic flux pumping3DSPChapmanU of WisconsinYesBreakoutNoNo
187Scaling of 2D structure of detachment frontDissipative Divertor PhysicsJarvinenVTT Technical Research CentreYesBreakoutNoNo
188Electron- and ion-heat dominated L-H transition regimesL-H transitionSchmitzUCLAYesBreakoutNoNo
195Obtaining High Core Confinement with High Edge Confinement using Pedestal ControlCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationKolemenPPPLYesBreakoutNoNo
197Test the new method for finding the 3D perturbation needed to avoid tearing3DSPKolemenPPPLYesBreakoutNoNo
200Locking Avoidance in high q_min by Dynamic Error Field Correction Assisted by 3D Field EntrainmentSteady State Scenarios & High qmin ThrustOkabayashiPPPLYesBreakoutNoNo
202Pedestal and core impurity transport in super H-mode dischargesCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationOdstrcilGAYesBreakoutNoNo
203Fast particle effects on transport of high Z ions with HFS asymmetryTurbulence and transportOdstrcilGAYesBreakoutNoNo
204Understanding the Impact of the Tokamak Edge on Rf PropagationCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationBrookmanGAYesBreakoutNoNo
208Investigation of high-Z impurity pump-out mechanism inside of saturated MHD modesTurbulence and transportOdstrcilGAYesBreakoutNoNo
209Isotope mass dependence of multichannel transportIsotope Mass ThrustOdstrcilGAYesBreakoutNoNo
211Shape Thresholds for Super H Access and Application to JET DT CampaignCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationSnyderORNLYesBreakoutNoNo
214Hybrid approac to Super H-modeCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationNazikianGAYesBreakoutNoNo
215Core-Edge Compatibility of Super H Mode with Closed DivertorCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationSnyderORNLYesBreakoutNoNo
216Test ExB shear importance in QH using co-Ip approachPedestal Physics and Pedestal Structure & QH ThrustChenGAYesBreakoutNoNo
218The Disruption Free ProtocolControlBarrGAYesBreakoutNoNo
219Detection of marginally stable modes in high qmin scenarios using the MM MHD spectroscopy vs shapeSteady State Scenarios & High qmin ThrustMunarettoPPPLYesBreakoutNoNo
220Metastable multiphase tungsten compounds: toward new fusion friendly material?*Innovative Materials EvaluationGuterlGAYesBreakoutNoNo
221Detection of marginally stable modes in high qmin scenarios using the MM MHD spectroscopy vs q95Steady State Scenarios & High qmin ThrustMunarettoPPPLYesBreakoutNoNo
222Apply MM MHD spectroscopy results from #219/#221 experiments to achieve ELM suppression in high qminSteady State Scenarios & High qmin ThrustMunarettoPPPLYesBreakoutNoNo
223Use the multimode MHD spectroscopy in real time to control the NBI and modify the modes stabilitySteady State Scenarios & High qmin ThrustMunarettoPPPLYesBreakoutNoNo
224Integrate a divertor solution in the T=0 IBSCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationTurcoColumbia UYesBreakoutNoNo
225Detachment onset with X-point heightDissipative Divertor PhysicsMcLeanLLNLYesBreakoutNoNo
227Impact of plasma opacity on divertor detachmentDissipative Divertor PhysicsMcLeanLLNLYesBreakoutNoNo
228Use new off-axis CD tools to improve noninductive sustainability of high beta AT plasmaSteady State Scenarios & High qmin ThrustGarofaloGAYesBreakoutNoNo
230Study the high density branch of RMP ELM suppression in the IBSInductive ScenariosTurcoColumbia UYesBreakoutNoNo
231Study the high density branch of RMP ELM suppression in the IBSELM ControlTurcoColumbia UYesBreakoutNoNo
232Impact of spectral contamination of the MWIR regionDissipative Divertor PhysicsMcLeanLLNLYesBreakoutNoNo
237Influence of isotope on H-mode density limitIsotope Mass ThrustHongUCLAYesBreakoutNoNo
238Mapping the Super H-mode Boundary and BifurcationCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationBortolonPPPLYesBreakoutNoNo
239Pedestal structure and stability as a function of Te/Ti and momentum injectionPedestal Physics and Pedestal Structure & QH ThrustBanerjeePPPLYesBreakoutNoNo
240How much protection does detachment give us from ELMs?Dissipative Divertor PhysicsSamuellLLNLYesBreakoutYesNo
241High performance core at high radiative fraction with real-time impurity feedback controlCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationAbbatePPPLYesGeneralNoNo
242Controlled low Z melting experiments using DiMES in support of ITERSurface EvolutionRudakovUCSDYesBreakoutYesYes
243Optimizing the process for developing 2D reconstructions of divertor conditionsDissipative Divertor PhysicsSamuellLLNLYesBreakoutNoNo
244Are kinetics the missing piece in our ability to predict impurity velocities in the SOL?SOL FlowsSamuellLLNLYesBreakoutNoNo
246Interpret W I & W II emission to benchmark S/XB coefficients & infer prompt redeposition fractionsMaterials Migration and MitigationEnnisAuburn UYesBreakoutNoNo
254Compatibility of QH-mode with Radiative DivertprCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationWilksMITYesBreakoutNoNo
255Contribution of molecules to radiated powerDissipative Divertor PhysicsMcLeanLLNLYesBreakoutNoNo
256Avalanche-like electron heat transport events in MHD-quiescent plasmasTurbulence and transportChoiKorea Institute of Fusion EnergyYesGeneralNoNo
257Detachment onset in SAS: The mysterious case of shot 173537 with a fully attached divertorParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustMcLeanLLNLYesBreakoutNoNo
260Wide pedestal QH-mode at low Zeff through real-time boronizationCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationBortolonPPPLYesBreakoutNoNo
261Exploring the role of nonlinear MHD in triggering tearing modes in Core-Edge Scenario OptimizationCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationChapmanU of WisconsinYesBreakoutNoNo
264Impact of ELM size and footprint on W sputtering and W leakage from open & closed divertorsImpact of Divertor Geometry on Divertor Leakage and SOL Impurity Transport - SAS-1W Potential ThrustAbramsGAYesBreakoutNoYes
267Detachment onset in SAS: The curious case of missing neutral pressure at cold plasma onset in 175816Particle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustMcLeanLLNLYesBreakoutNoNo
268Map and optimize the fully non-inductive operational space for the steady-state hybrid scenarioSteady State Scenarios & High qmin ThrustTurcoColumbia UYesBreakoutNoNo
271Detachment onset in SAS: The peculiar case of a Te cliff in 175816 with BxgradB out of the divertorParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustMcLeanLLNLYesBreakoutNoNo
276Super QH-mode with feedback controlled radiationCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationEldonGAYesBreakoutNoNo
280Physics requirements for high pressure staircase pedestal formationPedestal Physics and Pedestal Structure & QH ThrustNazikianGAYesBreakoutNoNo
281Perturbative study of inter-ELM pedestal localized instabilitiesPedestal Physics and Pedestal Structure & QH ThrustLaggnerNorth Carolina StateYesBreakoutNoNo
282Explore the use of the RMP to control the heat flux peak in high BetaP plasmas.DIII-D/EAST Task Force/ThrustMunarettoPPPLYesBreakoutNoNo
283Exploring Access Conditions to Standard QH and WPQH PedestalsPedestal Physics and Pedestal Structure & QH ThrustWilksMITYesBreakoutNoNo
284ELM-phase dependence on transport for different experimental conditionsCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationIzacardPrinceton UYesBreakoutNoNo
285Understanding the connection between ELM suppression and magnetic footprint size.ELM ControlMunarettoPPPLYesBreakoutNoNo
286Assess the benefits of the hybrid vs the high-qmin AT scenariosSteady State Scenarios & High qmin ThrustTurcoColumbia UYesBreakoutNoNo
290Collisionality Dependence of Quasi-Coherent FluctuationsPedestal Physics and Pedestal Structure & QH ThrustAshourvanGAYesBreakoutNoNo
291Elucidate the Physics Setting the I-mode PedestalPedestal Physics and Pedestal Structure & QH ThrustHughesMassachusetts Institute of TechnologyYesBreakoutYesNo
292Dependence of staircase pedestal formation on input power in the RMP grassy-ELM regimePedestal Physics and Pedestal Structure & QH ThrustAshourvanGAYesBreakoutNoNo
293Divertor detachment control based on Langmuir Probes measurementControlWangGAYesBreakoutNoNo
294Characterization of Te fluctuations in the divertor and main SOLDiv/SOL Turbulence and transportRudakovUCSDYesBreakoutNoNo
295Pedestal Structure and Neutral Source MeasurementPedestal Physics and Pedestal Structure & QH ThrustRosenthalMassachusetts Institute of TechnologyYesBreakoutNoNo
296Imaging of turbulence in the divertor and SOL and poloidal asymmetriesDiv/SOL Turbulence and transportBykovGAYesBreakoutNoNo
298Optimize fast ion confinement in high qmin plasmas at high beta !Steady State Scenarios & High qmin ThrustNazikianGAYesBreakoutNoNo
300Study of MHD modes near L-H transition in H, H+D and H+He plasmasIsotope Mass ThrustSolanoCiematYesBreakoutNoNo
301QH-mode similarity experiment between DIII-D and AUG with co-current beamsPedestal Physics and Pedestal Structure & QH ThrustViezzerU of SevilleYesBreakoutNoNo
303ECEI and MIR contributionELM ControlZhuUC DavisYesBreakoutNoNo
304How changes in ROSP, fueling location, and dRsep during D2 injection affect hybrid performanceImpurity Radiative Divertor Dependence on Divertor ClosureePetrieGAYesBreakoutNoNo
305Effect of seed selection, ROSP, and magnetic balance on successful radiating divertor operationImpurity Radiative Divertor Dependence on Divertor ClosureePetrieGAYesBreakoutNoNo
308Effect of reversing the grad-B drift on high betaN plasmas under radiating divertor conditionsImpurity Radiative Divertor Dependence on Divertor ClosureePetrieGAYesBreakoutNoNo
309Validate beta_e dependence of helicon CDHeating & Current Drive Physics (including Thrust: Validation of New Current Drive Tools)GarofaloGAYesBreakoutNoNo
311Proximity of tearing mode onset to ideal limits in high-beta plasmas3DSPTurcoColumbia UYesBreakoutNoNo
312Exploring the role of nonlinear MHD in triggering tearing modes in IBS and adv. ind. hybrid scenarioInductive ScenariosChapmanU of WisconsinYesBreakoutNoNo
313Exploring the role of fluctuation-based dynamos in magnetic flux pumpingInductive ScenariosChapmanU of WisconsinYesBreakoutNoNo
317Role of edge neoclassical particle transport and grad(B) drift direction in I-mode transitionsTurbulence and transportSciortinoMax-Planck Institute for Plasma PhysicsYesBreakoutNoNo
318Exploring the role of nonlinear MHD in triggering tearing modes in high-qmin and steady-state hybridSteady State Scenarios & High qmin ThrustChapmanU of WisconsinYesBreakoutNoNo
319Exploring the role of fluctuation-based dynamos in magnetic flux pumpingSteady State Scenarios & High qmin ThrustChapmanU of WisconsinYesBreakoutNoNo
320Access super H-mode in ITER Q=10 baseline targetInductive ScenariosNazikianGAYesBreakoutNoNo
321Further PCS Development on q-profile Control and NTM SuppressionControlPajaresLehigh UYesBreakoutNoNo
322Integrated Control of Individual ScalarsControlPajaresLehigh UYesBreakoutNoNo
327Effect of drifts in Ne/N2 seeded SAS divertorImpurity Radiative Divertor Dependence on Divertor ClosureeCasaliU of Tennessee, KnoxvilleYesBreakoutYesNo
328Impurity screening in closed divertorsImpurity Radiative Divertor Dependence on Divertor ClosureeCasaliU of Tennessee, KnoxvilleYesBreakoutYesNo
329Magnetic geometry as an actuator for detachment stability and controlAdvanced Magnetic ConfigurationsSamuellLLNLYesBreakoutNoNo
330Development of high radiation scenario with dual seeding in open and closed divertorsImpurity Radiative Divertor Dependence on Divertor ClosureeCasaliU of Tennessee, KnoxvilleYesBreakoutYesNo
331Minimize upstream density for divertor detachment and test radiation detachment modelImpurity Radiative Divertor Dependence on Divertor ClosureeWangGAYesBreakoutNoNo
332Detachment at horizontal and vertical targetsAdvanced Magnetic ConfigurationsWangGAYesBreakoutNoNo
333Validation of Predict First Simulations using CCOANB 210Steady State Scenarios & High qmin ThrustGriersonGAYesBreakoutNoNo
349isotope scaling at constant rhostarIsotope Mass ThrustscottPPPLYesBreakoutNoNo
351Machine Learning based Instability Prediction & AvoidanceControlKolemenPPPLYesBreakoutNoNo
359Neutrals: How fast are they going and where are they headed?Particle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustSamuellLLNLYesBreakoutNoNo
361Simultaneous measurement of electron and ion particle transport from ITG up to TEM dominated plasmaIsotope Mass ThrustTalaVTT Technical Research CentreYesBreakoutYesNo
362Fuel Ion Particle Transport using H/D IsotopesIsotope Mass ThrustMcKeeU of WisconsinYesBreakoutNoNo
363Assessing impact of SAS alignment on divertor particle content and transition to detachmentParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustLoreORNLYesBreakoutNoNo
364Dependence of divertor conditions on SOL width in SAS configurationParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustLoreORNLYesBreakoutNoNo
365Power Threshold Studies in Mixed Ion Species PlasmasIsotope Mass ThrustPlankIPP GarchingYesBreakoutYesYes
366DIII-D Experiments in Support of ITPA DSOL Detachment ResearchDissipative Divertor PhysicsReinkeORNLYesBreakoutYesNo
367Wide pedestal access at high power in QH-mode and RMP Hybrid plasmas.Pedestal Physics and Pedestal Structure & QH ThrustNazikianGAYesBreakoutNoNo
368Limits of RMP ELM Suppression Toward Double NullELM ControlShaferORNLYesBreakoutNoNo
369Limits of RMP ELM Suppression Toward Double NullELM ControlShaferORNLYesBreakoutNoNo
371ICE Mode StructureEnergetic Particle PhysicsDeGrandchampUC, IrvineYesBreakoutYesNo
373Measuring net and gross erosion rates of SiC in DIII-D divertor at forward BtSurface EvolutionRudakovUCSDYesBreakoutNoNo
375direct detection of islands with rotating n=1 RMPELM ControlNazikianGAYesBreakoutNoNo
376Main ion rotation in ELM suppressionELM ControlNazikianGAYesBreakoutNoNo
377RMP ELM suppression for inductive Hybrid plasmas relevant to the ITER Q=10 missionInductive ScenariosNazikianGAYesBreakoutNoNo
378Impact of isotope and first wall on plasma (Te, Zeff, q) during IP ramp-upIsotope mass ThrustMaillouxUKAEAYesBreakoutYesYes
379Compare H-mode plasmas with controlled ELMs in H, He, DIsotope mass ThrustMaillouxUKAEAYesBreakoutYesYes
380Investigate impact of isotope on plasmas at low and high beta/power and at low and high torqueIsotope mass ThrustMaillouxUKAEAYesBreakoutYesYes
381Evaluate the effect of penetration theory on RMP ELM suppressionDIII-D/EAST Task Force/ThrustWANGASIPPYesBreakoutYesYes
382Use NBI to evaluate n=2 RMP penetration positionDIII-D/EAST Task Force/ThrustWANGASIPPYesBreakoutYesYes
383Active MHD Spectroscopy of Edge Harmonic Oscillation (EHO) Mode Control for QH-modePedestal Physics and Pedestal Structure & QH ThrustWANGASIPPYesBreakoutYesYes
384Active MHD Spectroscopy of Edge Harmonic Oscillation (EHO) Mode Control for QH-modeDIII-D/EAST Task Force/ThrustWANGASIPPYesBreakoutYesYes
385Effect of 3D fields on turbulence and transport in DIII-D plasmasTurbulence and transportKumar BaradaUCLAYesBreakoutNoNo
386Complete plasma turbulence measurements of DIII-D L-mode plasmasTurbulence and transportBurkeLLNLYesBreakoutNoNo
388Characterization of tungsten transport and leakage in the SAS divertorImpact of Divertor Geometry on Divertor Leakage and SOL Impurity Transport - SAS-1W Potential ThrustMaGAYesBreakoutNoNo
389Rotating MPs to study the change of ELMs in AUG similar shapesELM ControlWillensdorferMax-Planck Institute for Plasma PhysicsYesBreakoutNoNo
390Characterization of tungsten transport and leakage in the SAS divertorImpact of Divertor Geometry on Divertor Leakage and SOL Impurity Transport - SAS-1W Potential ThrustMaORAUYesBreakoutNoNo
391Max-Planck-Institut f�¼r PlasmaphysikELM ControlWillensdorferMax-Planck-Institut f�¼r PlasmaphysikYesBreakoutNoNo
392Rotating MPs to study helically edge localized modes in AUG similar shapesELM ControlWillensdorferMax-Planck-Institut f�¼r PlasmaphysikYesBreakoutNoNo
396Overdriven ELM SuppressionELM ControlLyonsGAYesBreakoutNoNo
398Parametric Dependence of Turbulence and Transport on rho-star in low-rotation H-mode plasmasTurbulence and transportMcKeeU of WisconsinYesBreakoutNoNo
400Verification of Imaging Fast Ion D-Alpha and application to EP model validationEnergetic Particle PhysicsMariniORAUYesBreakoutNoNo
402Nonlinear Effects of Impurity Dilution, Te/Ti, Safety Factor, and Magnetic Shear on TransportTurbulence and transportErnstMassachusetts Institute of TechnologyYesBreakoutNoNo
404Experimentally test edge code predictions of strong correlation between T_e_target and n_D2_targetParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustStangebyU of TorontoYesBreakoutNoNo
405Max-Planck-Institut f�¼r PlasmaphysikELM ControlWillensdorferMax-Planck-Institut f�¼r PlasmaphysikYesBreakoutNoNo
410Radiative divertor with impurity seeding at moderate densityDissipative Divertor PhysicsJarvinenVTT Technical Research CentreYesBreakoutNoNo
411Impurity seeded radiative divertor in L-modeDissipative Divertor PhysicsJarvinenVTT Technical Research CentreYesBreakoutNoNo
412Test H-L back transition transient mitigation strategies in detachmentCore-Edge Integration Task Force incorporating Thrust: Core-Edge Scenario OptimizationEldonGAYesBreakoutNoNo
413Redistribute plasma momentum and particles in divertor due to the coupling of drift and sheathSOL FlowsWangGAYesBreakoutNoNo
415Power and momentum detachment in impurity seeded plasmas and test radiation detachment modelDissipative Divertor PhysicsWangGAYesBreakoutNoNo
416Characterization of pedestal/SOL coupling at X-point in detached conditionsDissipative Divertor PhysicsJarvinenVTT Technical Research CentreYesBreakoutNoNo
417Collisionality effects on ELM dynamics in the high-betaP scenarioDIII-D/EAST Task Force/ThrustWeisbergGAYesBreakoutNoNo
418Investigating RWM stability in the high-betaP scenarioDIII-D/EAST Task Force/ThrustWeisbergGAYesBreakoutNoNo
423Characterizing the widths of heat flux footprint in closed diverotrParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustRenU of Tennessee, KnoxvilleYesBreakoutNoNo
424Fueling effects of metal Rings in the divertorImpact of Divertor Geometry on Divertor Leakage and SOL Impurity Transport - SAS-1W Potential ThrustBykovGAYesBreakoutNoNo
425Characterizing the widths of heat flux footprint in closed diverotrParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustRenUTKYesBreakoutNoNo
426Characterizing the widths of heat flux footprint in closed diverotrParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustRenUTKYesBreakoutNoNo
427Characterization of the impact of baffling on SOL profiles at varying plasma decay lengthsParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustJarvinenVTT Technical Research CentreYesBreakoutNoNo
428Interplay of particle control and drifts in detached divertorsParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustShaferORNLYesBreakoutNoNo
430How does closure impact the path to complete detachment?Particle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustCanikORNLYesBreakoutNoNo
435Fully non-inductive high betap scenario at q95~6-7DIII-D/EAST Task Force/ThrustHuangASIPPYesBreakoutNoNo
436Probing the drift effect by actively biased SAS divertorParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustRenU of Tennessee, KnoxvilleYesBreakoutNoNo
439Exploring high-frequency small-ELM regime in hybrid scenario on DIII-DDIII-D/EAST Task Force/ThrustWangASIPPYesBreakoutNoNo
443Compatibility of highly radiative divertor with high beta_p scenarioDIII-D/EAST Task Force/ThrustWangASIPPYesBreakoutNoYes
450Explore the Basis of Realizing ITER Q=10 at Ip<=9MA on DIII-DDIII-D/EAST Task Force/ThrustDingGAYesBreakoutNoNo
451Combine the MM MHD spectroscopy, ML, RT DCON to control q95 and beta and modify the modes stability3DSPMunarettoPPPLYesBreakoutNoNo
452Develop High Betap Scenario toward High Non-Inductive Current Fraction at q95~6 on DIII-DDIII-D/EAST Task Force/ThrustDingGAYesBreakoutNoNo
453Investigate the Turbulence Suppression in High Betap Plasmas when Te is Close to TiDIII-D/EAST Task Force/ThrustDingGAYesBreakoutNoNo
454Validating Dominant Micro-Turbulence Instabilities in DIII-D high BetaP ScenariosDIII-D/EAST Task Force/ThrustJianGAYesBreakoutNoNo
455Detection of marginally stable modes in high betaP scenarios using the MM MHD spectroscopyDIII-D/EAST Task Force/ThrustMunarettoPPPLYesBreakoutNoNo
465Test free-streaming+recycling model (FSRM) for W sputtering during ELMs at low collisionalityMaterials Migration and MitigationAbramsGAYesBreakoutNoNo
466Plasma flow in a closed divertorParticle Balance and Impact of Divertor Closure Including SAS on Detachment ThrustLeonardGAYesBreakoutNoNo
467Main-ion, impurity and electron profile evolution throughout the ELM cyclePedestal Physics and Pedestal Structure & QH ThrustHaskeyPPPLYesBreakoutNoNo
468absorption study of top launch ECCD schemeHeating & Current Drive Physics (including Thrust: Validation of New Current Drive Tools)ChenGAYesBreakoutNoNo
469compare the off-axis ECCD efficiency between top and outside launchHeating & Current Drive Physics (including Thrust: Validation of New Current Drive Tools)ChenGAYesBreakoutNoNo
470Measuring intra-ELM D recycling on pre-exposed W surfacesSurface EvolutionSinclairOak Ridge Associated UniversitiesYesBreakoutNoNo
477Optimizing NTV torque profiles with multi-modal 3D control3DSPWeisbergGAYesBreakoutNoNo
478O-mode absorption and refraction for top launch ECHHeating & Current Drive Physics (including Thrust: Validation of New Current Drive Tools)PettyGAYesBreakoutNoNo
480Radiative divertor in high-betap plasma by utilizing SAS and local impurity injectionDIII-D/EAST Task Force/ThrustWangGAYesBreakoutNoNo
481Develop QH Mode for HFS LHCD ExperimentsHeating & Current Drive Physics (including Thrust: Validation of New Current Drive Tools)WukitchMassachusetts Institute of TechnologyYesBreakoutNoNo
482Pyroid HT Material Assessment using DiMESInnovative Materials EvaluationWukitchMassachusetts Institute of TechnologyYesBreakoutNoNo
483Off-axis NBCD measurement with 210 CCOANBHeating & Current Drive Physics (including Thrust: Validation of New Current Drive Tools)ParkORNLYesBreakoutNoNo
487Measure Peak Current Drive Efficiency in Non-Inductive ScenerioHeating & Current Drive Physics (including Thrust: Validation of New Current Drive Tools)BrookmanGAYesBreakoutNoNo
492Understanding outliers of ITER error field correction criteria3DSPParkPPPLYesBreakoutYesYes
493Establishment of High Power Operation of Comb-line Antenna Operation with PlasmaHeating & Current Drive Physics (including Thrust: Validation of New Current Drive Tools)PinskerGAYesBreakoutNoNo
494Measurement of high-efficiency central current drive with helicon systemHeating & Current Drive Physics (including Thrust: Validation of New Current Drive Tools)PinskerGAYesBreakoutNoNo
495SAS, meet DNAdvanced Magnetic ConfigurationsThomasGAYesBreakoutNoNo
497Reducing the L-H power threshold in D plasmas with pelletsL-H transitionWilcoxORNLYesBreakoutNoNo
499Helicon Current Drive MeasurementsHeating & Current Drive Physics (including Thrust: Validation of New Current Drive Tools)PettyGAYesBreakoutNoNo
500Tracking erosion and redeposition of crystalline SiC in the DIII-D divertorSurface EvolutionSinclairGAYesBreakoutNoNo
502Scaling of turbulence properties with ion mixIsotope mass ThrustCarterUCLAYesBreakoutNoNo
508Understand divertor leakage & SOL accumulation using isotopic methane & main ion puff/pump methodsMaterials Migration and MitigationUnterbergORNLYesBreakoutNoNo
512Parametric decay study with helicon launchHeating & Current Drive Physics (including Thrust: Validation of New Current Drive Tools)PinskerGAYesBreakoutNoNo
513Boundary Ion temperature measurement based on retarding field analyzerDivertor ClosureRenU of Tennessee, KnoxvilleYesBreakoutNoNo
514MGI-assisted-SPI for decreased radiation asymmetries and increased penetration depthDisruption Mitigation ThrustSweeneyMassachusetts Institute of TechnologyYesBreakoutNoNo
516Role of Quasi-symmetric Magnetic Perturbations on LH-transition and pedestal transport3DSPZarnstorffPrinceton UYesBreakoutNoNo
519Role of poloidal rotation on pedestal instabilitiesPedestal Physics and Pedestal Structure & QH ThrustPankinPPPLYesBreakoutNoNo
520Impact of Nonresonant Magnetic Perturbations on L-H and H-L TransitionsL-H transitionLoganColumbia UYesBreakoutNoNo
534Doublet shape in DIII-DTorkil JensenAustinU of Texas, AustinYesBreakoutNoNo
535Demonstration of impurity control via an actively heated divertor in DIII-DTorkil JensenAbramsGAYesBreakoutNoNo
540SAS 2 precursor experimentsParticle Balance and Detachment Characterization in Closed Divertors ThrustWatkinsSandia National LabYesBreakoutNoNo
541Soliton like Shock Front Dynamics during Pellet Deposition in H-modeTorkil JensenBaylorORNLYesBreakoutNoNo
543Strategy for ELM controlELM ControlLoarte-PrietoITER OrganizationYesGeneralNoYes
5443-D ELM suppressed regime access/exitELM ControlLoarte-PrietoITER OrganizationYesGeneralNoYes
5453-D ELM suppressed H-mode and pellet fuellingELM ControlLoarte-PrietoITER OrganizationYesGeneralNoYes
553Studying the PMI properties of advanced tungsten alloys with DiMESInnovative Materials EvaluationAllainU of Illinois at Urbana-ChampaignYesBreakoutNoNo
559Impurity leakage from a closed divertor during RMP applicationImpact of Divertor Geometry on Divertor Leakage and SOL Impurity Transport - SAS-1W Potential ThrustHinsonORNLYesBreakoutNoNo