DIII-D RESEARCH OPPORTUNITIES FORUM FOR THE 2013 EXPERIMENTAL CAMPAIGN Review | Direct submission with log-in | Request submission without log-in

For website assistance, please contact the Webmaster
Questions about ROF? Contact Max Fenstermacher


Print this page
Title 6: Prompt torque and zonal flow damping
Name:Keith Burrell Burrell@fusion.gat.com Affiliation:General Atomics
Research Area:Plasma Rotation Presentation time: Not requested
Co-Author(s): J.S. DeGrassie, W.M. Solomon ITPA Joint Experiment : No
Description: The goal of this experiment is to determine the damping rate of the zero mean frequency zonal flow and the plasma poloidal rotation by periodically perturbing the plasma rotation using modulated co and counter neutral beam injection. The beam modulation will be fast compared to the fast ion slowing down time, so that the modulation will primarily be due to the prompt torque caused by fast ion orbit shift. ITER IO Urgent Research Task : No
Experimental Approach/Plan: This experiment is best done in QH-mode plasmas, because they are high temperature and low density, which leads to long ion-ion collision times. In addition, they have long steady periods, which allows significant averaging. Use the prompt torque from the beam orbit shift to apply periodic co and counter torques to the plasma by modulating the co and counter beams out of phase. Orbit shift calculations show that the 210LT and 330 RT beams give approximately equal prompt torque profiles out to rho=0.6. This allows 330 LT and 30LT to be run continuously to get CER data. Experimentally, what we are looking for is the evolution of the induced poloidal rotation (or radial electric field) after the initial jump which occurs when we add an extra co or counter beam. The beam modulation period will be chosen so that there are several ion collision times within one beam on time; this will be between 10 and 40 ms. CER will be set to a short integration time, something like 2 ms. We can average over multiple pulses to improve the quality of the rotation measurement. We will scan ion-ion collision time by changing the ion temperature using different power levels and by changing the core density by using ECH to induce density pumpout. The ECH will also provide extra electron heating to increase the fast ion slowing down time.
Background: When neutral beams deposit toroidal angular momentum in the plasma, they do so on two time scales, one for the momentum deposited perpendicular to the magnetic field and another for the momentum deposited parallel. The parallel momentum couples to the background plasma on the time scale of the collisions between fast ions and the background ions. The perpendicular momentum is deposited much more quickly, through a process involving radial currents. When a beam neutral ionizes, the resulting D+ ion travels on a orbit whose guiding center is shifted from the ionization point. For D+ ions born outside the magnetic axis, this shift is outwards (towards larger minor radius) for counter injected neutrals and inwards (towards smaller major radius) for co-injected neutrals. This shift represents a radial current of fast ions. Processes in the background plasma produce an offsetting radial current, which then imposes a torque on the background plasma. However, this offsetting radial current grows up on the ion-ion collision time. During this time, the poloidal rotation and the radial electric field both evolve. If we use out of phase modulation of the counter and co beams, we can periodically reverse this torque, creating a square wave modulation. If the modulation period is fast compared to the fast ion slowing down, we only need to consider the prompt torque. For a plasma with 15 keV central temperature and 5 x 10^19 m^-3 density, the fast ion slowing down time is greater than 100 ms even for the 1/3 energy component. The damping of the overall plasma poloidal rotation is the same as the damping time of the plasma electric field. Accordingly, CER measurements of any impurity ion can be used to determine the overall poloidal rotation damping. More importantly, this damping time of the plasma electric field is the zonal flow damping time, which is crucial to turbulence behavior. Theory predicts that this damping time is of order the ion-ion collision time which is around 20 ms in our candidate plasmas.
Resource Requirements: Reverse Ip. 6-8 NBI sources. All ECH gyrotrons
Diagnostic Requirements: Standard profile and all fluctuation diagnostics, especially edge BES and ECE-I for EHO studies
Analysis Requirements: --
Other Requirements: --